
The risks of extreme load extrapolation
Stefan F. van Eijk1, René Bos1, and Wim A. A. M. Bierbooms1

1Wind Energy Research Group, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The
Netherlands

Correspondence to: Stefan van Eijk (sfvaneijk@gmail.com)

Abstract. An important problem in wind turbine design is the prediction of the 50-year load, as set by the IEC 61400-1

Design Load Case 1.1. In most cases, designers work with limited simulation budgets and are forced into using extrapolation

schemes to obtain the required return level. That this is no easy task is proven by the many studies dedicated to finding the

best distribution and fitting method to capture the extreme load behavior as well as possible. However, the issue that is often

overlooked is the effect that the sheer uncertainty around the 50-year load has on a design process. In this paper, we use a5

collection of 96 years’ worth of extreme loads to perform a large number of hypothetical design problems. The results show

that, even with sample sizes exceeding N = 103 ten-minute extremes, designs are often falsely rejected or falsely accepted

based on an over- or underpredicted 50-year load. Therefore, designers are advised to be critical of the outcome of DLC 1.1

and should be prepared to invest in large sample sizes.

1 Introduction10

Wind turbine designers are confronted with the IEC 61400-1 Design Load Case 1.1 (IEC, 2005). This evaluates the structural

integrity of the major load-carrying components on the basis of a 50-year return level, plus safety factors. As prescribed by

Appendix F of the standards, a minimum of 300 minutes of time series—distributed over the relevant wind speeds—will

have to be evaluated and followed by an extrapolation scheme to obtain the 50-year return level. Such extrapolations produce

notoriously uncertain estimates, which is why the Design Load Case (DLC) 1.1 is often avoided or at least greatly simplified in15

early stages of the design. However, in cases where DLC 1.1 is design-driving (e.g., for foundations and controllers), dealing

with this uncertainty is unavoidable.

Many past efforts to reduce this uncertainty have focused on trying out different sampling methods (Fogle et al., 2008;

Agarwal and Manuel, 2009), new modeling techniques (Moriarty et al., 2004; Bos and Veldkamp, 2016), or finding the best

distribution type to match the extreme load behavior (Pandey and Sutherland, 2003; Genz et al., 2006; Freudenreich and20

Argyriadis, 2007; Ragan and Manuel, 2007; Natarajan and Holley, 2008; Peeringa, 2009; Lott and Cheng, 2016). Yet, because

most studies deal with relatively small sample sizes (e.g.,� 1 year), the actual uncertainty that surrounds the 50-year return

level is often underexposed. With a 63-year data set, Barone et al. (2012b) were able to establish the 90% confidence interval

around the 50-year load for sample sizes up to N = 2,000 ten-minute maxima. This revealed not only that the 50-year levels

are clouded by high uncertainty, but also that they suffer from a considerable bias. Inevitably, this has an effect on the choices25

made during design.
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The aim of this paper is to demonstrate this with a simple exercise, using a collection of 96 years’ worth of ten-minute

load maxima released by Barone et al. (2012a). The uncertainty distribution is constructed by repeatedly sampling subsets of

this data set and obtaining the 50-year loads through an automated extrapolation scheme. We then simulate a problem where

a hypothetical designer has to choose between two or more concepts and record how often this uncertainty leads to wrong

choices. The results of this paper should help designers to estimate the required sample sizes for their problem, but also to form5

a critical attitude concerning the quality and reliability of extrapolated 50-year loads.

2 Methodology

Since the focus of this work is on the impact of uncertainty, rather than obtaining the highest possible quality result, the

workflow is kept as simple as possible. Loads were extracted by drawing a random sample from a large set of crude Monte

Carlo results and the 50-year return period is found by a graphical fit.10

2.1 Loads data set

The data set that was used for this study was generated by Barone et al. (2012a). It features the onshore version of the NREL

5 MW reference wind turbine, operating for 96 years in an IEC class 1B climate (IEC, 2005).1 Ten-minute mean wind speeds

were randomly drawn from a Rayleigh distribution, bounded by the cut-in and cut-out wind speeds of 3 and 25 m/s, respectively.

Turbulent wind fields were generated by TurbSim on a 20×20 grid with a width and height of 137 m and were fed to the FAST15

v7 aeroelastic code. Every simulation ran for eleven minutes, of which the first minute was discarded to avoid any start-up

transients. More details can be found in the original paper.

Each output channel contains over 5 million ten-minute extremes. In this paper, we will use the tower base overturning

moment, which plays a major role in the design of foundations. Figure 1 shows the entire set of loads at the respective wind

speeds.20

2.2 Extreme load distribution

The wind speeds were drawn directly from the Rayleigh distribution. Therefore, the cumulative distribution of extreme loads

follows naturally from ranking a set of N loads and assigning a plotting position:

F̂ (Mi) =
i

N + 1
. (1)

In this case, however, the wind speeds outside of the operating range will have to be accounted for:25

F̂ (Mi) = 1−
(

1− i

N + 1

) cut-out∫

cut-in

f(Ū)dŪ, (2)

where f(Ū) is the mean wind speed distribution. Then, plotting the entire data set yields the return level plot shown in Figure

2. With 96 years worth of load data, the 50-year return value can be interpolated, which yields 115 MN·m.
1The original paper specifies a class 2B site, but this has been corrected with the release of the data set (see http://energy.sandia.gov/?page_id=13173).
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Figure 1. The data set, containing over 5 million ten-minute extreme overturning moments between the cut-in and cut-out wind speeds. The

box plots indicate the scatter per 1-m/s bin, where the boxes mark the 25th and 75th percentiles, the whiskers mark the 2.5th and 97.5th

percentiles, and the bar is the median.
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Figure 2. Return level plot of the tower base overturning moment, with a 96-year sample size, yielding a 50-year value of 115 MN·m.

The tail of the distribution shows a characteristic bend, or “knee”, that hints that more than one process is at work. Indeed,

tracing back the wind speeds belonging to the 10% highest loads points towards a region well above the rated wind speed (see

Figure 3). It turns out that this is due to a particular controller response to negative gust amplitudes (e.g., Bos et al., 2015; Bos

and Veldkamp, 2016), which also explains the shape of the scatter plot in Figure 1.
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Figure 3. Histogram of the sampled wind speeds, where the dashed line marks the Rayleigh mean wind speed distribution belonging to an

IEC class 1B climate. The light and dark filled areas correspond to the lowest 90% and highest 10% loads, respectively.

2.3 Extrapolation scheme

In many practical situations, a designer does not have the computational resources available to simulate several decades of

operation. That is when the 50-year load has to be found by extrapolating. The objective is then to match the tail behavior

with a distribution function, for example by least-squares fitting. A good candidate for this is the generalized extreme value

distribution (GEV):5

G(M ; µ, σ, ξ) = exp

[
−
(

1 + ξ
M −µ
σ

)−1/ξ
]
, (3)

where µ is the location parameter, σ the scale parameter, and ξ the shape parameter.

To estimate the uncertainty that comes from repeatedly extrapolating different sets of loads, this process has to be automated.

However, the difficult part is then to decide where the tail exactly starts under varying sample size. A simple solution that seems

to work in most cases is to assume that the tail covers the second half of the distribution when drawn on Gumbel paper; i.e.,10

− ln
[
− ln

[
F̂
]]
>− 1

2 ln
[
− ln

[
F̂ (M1)

]]
− 1

2 ln
[
− ln

[
F̂ (MN )

]]
. (4)

For the full data set, this means that the GEV distribution is fitted to the upper 0.07% of the data, which results in the Q-Q plot

shown in Figure 4.
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Figure 4. Q-Q plot, showing how well the empirical tail behavior matches with an generalized extreme value distribution (µ= 78.2 MN·m,

σ = 2.05 MN·m, ξ = 0.026).

This procedure is automated for k = 104 sets of loads, which yields a collection of 50-year return levels, distributed according

to f(M̂50 yrs):

rank→

←
se

t

M1,1 ≤ M2,1 ≤ . . . ≤ MN,1 → M̂50 yrs,1

M1,2 ≤ M2,2 ≤ . . . ≤ MN,2 → M̂50 yrs,2

...
...

...

M1,j ≤ M2,j ≤ . . . ≤ MN,j → M̂50 yrs,j

...
...

...

M1,k ≤ M2,k ≤ . . . ≤ MN,k → M̂50 yrs,k

↓

f(M̂50 yrs)

The medians and other quantiles are then estimated by sorting. In order to catch very bad fits, any extrapolated 50-year loads

that are more than 50% higher than the “real” value are discarded and resampled (as they would by an experienced engineer).5

The end result is the situation depicted in Figure 5, which can be repeated for different sample sizes.
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Figure 5. Return level plot of the tower base overturning moment, showing all the k = 104 distribution fits with a sample size of N = 103.

3 Results

Based on the load set and the extrapolation scheme, we can estimate how far a single 50-year load prediction would be off

from the true value.

3.1 Uncertainty surrounding the 50-year overturning moment

First, Figure 6 shows how the median and confidence intervals around the 50-year level vary as a function of sample size,5

N . Evidently, the larger the sample size, the smaller the error. Overall, the GEV distribution has a tendency to overpredict

the 50-year level, which is also found by fitting a straight line (i.e., a Gumbel distribution with ξ = 0) as done by Barone et

al. (2012b). Even with N = 104—which is already more than two months of simulated time—the median prediction still lies

about 5% above the ture 50-year level.

For sample sizes smaller than N = 104, it can be very hard to establish an appropriate tail behavior. The GEV fit will often10

return a 50-year level that is more than 50% higher than the true value, partially owing to large values of the shape parameter,

ξ. In such cases, a simple straight line will produce better predictions.

In addition, the root-mean-squared (RMS) error provides a single measure for the quality of the result:

εRMS =

√√√√1
k

k∑

j=1

(
M̂50 yrs,j −M50 yrs

)2

, (5)

where M50 yrs is the “true” 50-year level. As shown in Figure 7, the RMS error stays fairly constant up until a sample size15

of N = 104 when predictions above +50% are discarded. It is not until sample sizes of close to 105 that the tail shape of the

empirical extreme load distribution is reliable and most of the fitting problems disappear. Ultimately, the RMS error falls into

the classic 1/
√
N rule that is often found with Monte Carlo methods.
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Figure 6. Error in the extrapolated 50-year overturning moment, as a function of sample size.
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Figure 7. Root-mean-squared error in the extrapolated 50-year overturning moment, as a function of sample size.

3.2 Effect on conceptual design

How this uncertainty affects the design process is demonstrated here with a very simple example. A new concept is proposed

that is an exact copy of the NREL 5 MW machine, but with a different wall thickness at the base of the tower. The second

moment of area then changes according to

Iyy =
π

4

[
r4− (r− t)4

]
, (6)5

where r = 3 m is the base radius and t= 35 mm is the original wall thickness (Jonkman et al., 2009). An extreme overturning

moment would cause a compressive stress of

σz =
Mr

Iyy
+
mg

A
, (7)
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Figure 8. Outcome of a concept selection, where a new wall thickness if either accepted or rejected on the basis of a 50-year stress level with

a sample size of N = 103.

where mg = 6.82 MN is the total weight of the wind turbine and

A= π
[
r2− (r− t)2

]
, (8)

is the cross-sectional area of the tower base section.

The objective of the exercise is to find a new wall thickness to reduce the 50-year stress levels; i.e.,

σz,new < σz,old. (9)5

This might seem trivial at this point—any thicker wall is guaranteed to reduce the stresses—but the actual difficulty is to

determine the 50-year moment. Whereas the original design has already gone through an extensive load analysis from which

the 50-year load level is known, any new concept has to go through this process again.2

Due to the uncertainty that surrounds this 50-year level, the new design can be falsely rejected or falsely accepted. Figure 8

shows how often this happens when the load analysis is carried out 104 times with a sample size of N = 103. When the wall10

thickness is reduced by 10% to 31.5 mm, the new design will appear to have lower stresses in 25% of the cases (i.e., the false

positives). On the other hand, even when the wall thickness is increased by 20% to 42 mm, the new design has a 17% chance

to still be rejected (i.e., the false negatives). The closer the new design is to the original, the harder it will be to make the right

choice.

The positive bias that is often present in extreme load extrapolations (e.g., Barone et al., 2012b; Van Eijk, 2016) make it15

particularly difficult to prove that new designs are capable to reduce 50-year levels. With a crude Monte Carlo method, the only

solution is to further increase the sample size, as shown in Figure 9. However, it will take an immense computational effort to

completely remove the uncertainty from the design process.
2Maybe not for something like a new wall thickness, but more so for different control schemes or for rigorous changes to the blade design.
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Figure 9. Relative number of times a new wall thickness is accepted on the basis of a 50-year stress level with different sample sizes.
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Figure 10. How often five concepts, ranging from 25- to 45-mm wall thickness, are ranked in the right order from lowest stress to highest.

Another case is a comparison between several concepts, where the 50-year stress levels contain the same degree of uncer-

tainty. Five concepts, from 25- to 45-mm wall thickness, are ranked among each other, such that

σz,1 ≤ σz,2 ≤ σz,3 ≤ σz,4 ≤ σz,5. (10)

In the ideal case, the 45-mm wall thickness should end up at rank 1, the 40-mm one at rank 2, etc. However, how often this

ideal ranking happens in practice is shown in Figure 10. For sample sizes smaller than, say, N = 5 ·103, the right order is only5

found in 25% or less of the cases. It is not untilN = 3 ·105 that the uncertainty is small enough for the order to be right roughly

100% of the time. From N = 104 to N = 105, the quality of the predictions increases sharply, which is when the tail of the

distribution starts to take its proper shape.
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Figure 11. Ranking of five wall thicknesses on the basis of a 50-year stress level with different sample sizes.

How often each rank is assigned to each concept is shown in Figure 11. Clearly, the 45-mm wall thickness does not always

appear the best and the 25-mm wall thickness does not always appear the worst. The closer the concepts are to each other, the

harder it becomes to distinguish them by their 50-year stress levels. In fact, the chances of selecting a concept other than the

thickest, 45-mm one are higher than 15% for N ≤ 104.

4 Discussion5

The uncertainty around the 50-year level clearly has a very large impact on the design process. In this paper, we have focused

on wall thickness in order to produce results that are counter-intuitive. This is to demonstrate that extrapolated 50-year values

can be misleading and can easily trick the designer into making bad choices. It is therefore very important that the designer is

skeptical enough of their own results.

In this case, those bad choices are obvious. However, in many other cases, for example when choosing between different10

foundation types or when tuning the gain settings for a controller, they can be very difficult to spot. Considering this, one may

wish to avoid having to deal with DLC 1.1 altogether. Yet, if DLC 1.1 is design-driving or if certain extreme load behavior is

only found in very large sample sizes—which was the case with the baseline NREL 5 MW controller—doing a large number

of load cases cannot be avoided.

Situations where good designs are wrongly discarded or where bad designs are wrongly accepted have a high chance of15

occurring when the sample sizes are small, especially during the initial design phases. In any case, we can conclude that the

bare minimum of 300 minutes of time series, as prescribed in Appendix F of the standards (IEC, 2005), is not sufficient to

produce any reasonable 50-year estimate. Based on this load set and this extrapolation produce, one should instead aim for

sample sizes larger than N = 105. The effects of changes in wall thickness that in the order of more than 10% are then easily

recognizable.20
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The most obvious solution to reduce the uncertainty is to use high-performance computers in order to run extensive simula-

tion campaigns (e.g., Barone et al., 2012a, b). An alternative remedy is to rely on importance sampling, which is a well-known

variance reduction method that allows the user to allocate the computational resources for the most severe conditions (e.g., Bos

et al., 2015; Bos and Veldkamp, 2016).

5 Conclusions5

The goal of this paper was to demonstrate the effects of the uncertainty around extrapolated 50-year loads. It showed that,

unless very large sample sizes are used, DLC 1.1 is a very unreliable measure for the performance of a design. This uncertainty

has a pronounced effect on early phases of the design, when computational resources are often scarce.

One should always take into account that it is very time-consuming to prove that concepts are able to reduce the 50-year

load, unless the design changes are very radical. In an example where the bottom tower wall thickness of the NREL 5 MW10

reference turbine was varied, a 10% increase in wall thickness was identified as a way to reduce the stress in only 75% of the

cases with a sample size of N = 103. In fact, more than 105 simulations were required to decrease the probability of a false

rejection to 10%. Another example where five wall thicknesses, ranging from 25 to 45 mm, were ranked in order from the

lowest to highest stress showed a similar trend. With N = 103, the correct order appeared in only 25% of the cases, which

improved to roughly 90% for N = 105.15

These results show that a critical attitude is required when judging extrapolated extreme loads. When DLC 1.1 is not the

design-driver, it might be best to avoid it altogether. Otherwise, using high-performance computing or importance sampling

methods will be the best approach.
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